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Autorotation of an elliptic cylinder about an axis fixed perpendicular to a parallel 
flow is explained in this paper by means of numerical solutions of the Navier-Stokes 
equations. Potential-flow theory predicts, for constant angular velocity, half a period 
in which a torque supports rotation and half a period in which it opposes rotation, with 
vanishing torque in the average. This balance is disturbed by viscous-flow effects in 
such a way that, for a given angular velocity, vortex shedding either damps rotation 
or, under certain conditions, favours rotation. The proper interplay of those conditions, 
which include synchronization of vortex shedding and rate of rotation, results in auto- 
rotation. The numerical results for Re ,< 400 are compared with experimental data 
for Re = 90000 from the literature. The agreement of the force coefficients and the 
large-scale flow patterns is surprisingly good. 

1. Background 
The concept of autorotation is not uniquely defined in fluid dynamics. Sometimes, 

aerodynamicists consider any continuous rotation of a body in a parallel flow without 
external sources of energy as autorotation. Under this definition, windmills, water 
wheels, anemometers, and certain tree fruits and seeds are ' autorotating ' devices. 
These bodies are geometrically shaped in such a way that, whenever they are kept 
fixed in a fluid flow, a torque is present which initiates rotation as soon as the bodies 
are released. On the other hand, a body can exhibit autorotation in the classical sense 
only if one or more stable positions exist a t  which the fluid flow exerts no torque on 
the resting body. In this case, a sufficiently strong initial impulse is required before 
the fluid flow can maintain a continuous spinning of the body. 

Although the axis of rotation may assume any orientation with respect to the flow, 
it is useful to distinguish two special cases of axis orientation for autorotation in the 
restricted, classical sense. In the first special case the axis of rotation is parallel to the 
flow, and the body must be symmetrical with regard to the parallel stream such that 
no torque is present whenever the body is at  rest. An initial impulse is always necessary 
to obtain autorotation. Typical examples are the Lanchester propeller (Riabouchinsky 
1935) and the spinning airfoil (Bairstow 1939). The explanation of these phenomena is 
quite straightforward; it is based on the local change of angle of attack of the rotating 
wing and on the occurrence of stall. 

In the second special case the axis is perpendicular to the parallel flow and the body 
need be symmetrical with respect to the parallel flow in only one stable position. In 
this position the flow exerts no torque on the resting body, and again an initial impulse 
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is necessary to obtain autorotation. However, from other positions, the body will start 
rotating when released with no initial impulse, provided the body can pick up and 
store sufficient angular momentum to overcome the adverse torque around the stable 
position. Examples are the falling rectangular piece of cardboard and the rotating 
dumb-bell (A. M. 0. Smith 1953). The axis of the cardboard (or plate) may be free to 
move or may be fixed in a parallel stream. The autorotation of the dumb-bell is due to 
the sudden drop of the spheres' drag in the transition range from laminar to turbulent 
flow and, thus, is restricted to the Reynolds-number region of about 4 x  lo5. The 
explanation of the plate autorotating around an axis fixed in the stream is given in 
this paper. 

A few historical notes on the autorotation of plates will inform the reader of the 
physical problems involved and of the areas of application. A detailed historical 
account has been given by Lugt (1978). 

Maxwell (1890) was probably the first to describe a falling rotating rectangular 
piece of cardboard in 1853. He recognized that the centre of mass and the centre of 
aerodynamic forces do not coincide. This gives rise to a torque. He assumed that this 
torque can be divided into a 'quasi-steady' part and a contribution due to rotation 
which is called the 'dynamic' part. The latter is, according to Maxwell, always 
opposite to the direction of rotation. 'Quasi-steady' means that the forces on the 
body vary so slowly with rotation that they can be computed a t  a particular instant 
as if the body were not rotating. From angles of attack a: = 0" to 90" the torque on 
the plate supports rotation ('supporting period'), whereas from a = 90" to 180" the 
torque acts on the plate in opposition to rotation ('retarding period'). Maxwell 
argued that the torque in the supporting period is larger than in the retarding period 
because the translational velocity of the plate for a: = 0" is larger (the drag is smaller) 
than that for a. = 90". The higher translational speed around a: = 0" causes a larger 
torque in the supporting period. Maxwell also recognized that the deviation from 
vertical fall is attributable to the lift due to rotation. 

Riabouchinsky ( 1935), who about 1906 coined the word ' autorotation ', distinguished 
for the first time between autorotating plates with fixed axes and those with freely 
moving axes. He realized that Maxwell's explanation was deficient in that, for auto- 
rotation with fixed axes, there is no net supporting torque for the quasi-steady part. 
The dynamic part, however, gives a supporting contribution since, in the supporting 
period from a = 0" to go", the streamlines at the leading edge of the plate are more 
curved than those a t  the same a: in the retarding period. Hence, the larger suction 
effect at  the leading edge causes a higher torque in the supporting period. Although 
Riabouchinsky's statement is true, i.e. the dynamic part can contribute to a net 
supporting torque, the explanation for it is toovague. He also found that the moment of 
inertia must be large enough to overcome the period,of adverse torque (fly-wheel effect). 

After World War I1 considerable interest in autorotation normal to a parallel flow 
arose in three different technical areas. The largest effort was devoted to the control 
of spinning finned missiles, followed by investigations of the spreading of autorotating 
leaflets, bomblets, and seeds. The third area dealt with the autorotating behaviour of 
non-stabilized airships, re-entry bodies, released nose sections of fuselages, and hail- 
stones of oblate-spheroidal shape. A compilation of the extensive literature can be 
found in the report by Lugt (1978). From this literature, a few results of impoItance 
to the explanation of autorotating plates are summarized here. 
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A. M. 0. Smith (1953) recognized that lift hysteresis is an essential effect in under- 
standing autorotation. In the late fifties, cine films (unpublished) of wind-tunnel 
experiments with plates and cruciform plate systems were made at  the Department 
of Aeronautical Engineering at the University of Notre Dame, Indiana, under the 
direction of F. N. M. Brown. These movies clearly reveal the existence and attachment 
of a strong vortex at the receding edge of the plate in the retarding period. Detailed 
experimental studieswith autorotating plates were made by E. H. Smith (1971) which 
produced data on drag, lift, and moment coefficients as a function of angle of attack. 
The influence of Reynolds number, moment of inertia, and other parameters on auto- 
rotation was also investigated. During the review of this paper the investigation by 
Iversen (1979) came to the attention of the author. Iversen analysed experimental 
data from previous studies and evaluated them with respect to effects of Reynolds 
number, moment of inertia, and geometry on autorotation. 

The state-of-the-art today may be summarized in the following way. Autorotation 
about an axis perpendicular to the fluid flow can be explained qualitatively for bodies 
with freely moving axes by means of the ' quasi-steady ' method if the dimensionless 
moment of inertia is small (but not so small that the body will oscillate instead of 
autorotate). For large values of moment of inertia the freely moving body behaves 
like one with a fixed axis, and the quasi-steady theory is not valid. Some aspects of 
the dynamic behaviour are fairly well understood, for instance the role of lift hys- 
teresis. However, a detailed and complete explanation is still lacking. The present 
paper will address this deficiency. 

It is interesting to note that this study is an example of the way in which computer 
experiments can help to explain phenomena which are too difficult or too costly to 
study by means of physical experiments. 

2. Model formulation and solution technique 
The movement of a freely falling rectangular piece of cardboard indicates that the 

autorotation around the spanwise axis is quite stable, and that the model can be 
simplified by assuming the laminar flow of an incompressible fluid around an infinitely 
long plate in two space dimensions. Since autorotation of a plate about a fixed axis 
cannot be explained by a quasi-steady theory, the assumption of a fixed axis focuses 
the study on the essential features which generate autorotation. Under this assumption 
the motion of the body has one degree of freedom, that is, the body rotates only 
about the fixed axis with the angular velocity Q = da/d t ' ,  where a is the angle of 
attack and t' the time. The equation for the angular motion is then 

I dQ/dt' = T, (1)  

where I is the moment of inertia and T the torque. For periodic motions of the plate 
autorotation is defined bv 

In general, of course, the value of the integral T ddi: is not zero except for certain 

values of a. Riabouchinsky (1935) noticed that I must be sufficiently large if the plate 
sg 
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is to autorotate. The experiments of E. H. Smith (1971)  show, furthermore, that !2 
is almost constant under certain conditions. Criteria for autorotation and i2 z const. 
can be obtained from equation ( 1 )  by integration with respect to a: 

(3)  Q2=n2+-  T d B .  

Here a-), is the angle of attack a t  which i2 is equal to the average value a. (Equation 
(3) was given by A. M. 0. Smith (1953)  for aLJI = O",  i2 = Q0.) Introducing the moment 
coefficient C,, = T/&pU2(&d)2 ,  the spin parameter S = a d / 2 U ,  and the dimensionless 
moment of inertia I* = I /p (  

2 a  

I . laH 

one obtains for equation (3)  : 

with p the density of the fluid, U the constant speed of the parallel flow, and d the 
chord of the plate. Since the integral in equation (4) is a periodic function with finite 
amplitude B > 0, it follows from equation (4) that 

Autorotation differs from oscillation in +,hat with autorotation $2 never changes its 
sign. Hence, if one assumes without loss of generality that i2 > 0, the condition for 
autorotation is 

B 
I " x 2  Q 1. 

The stronger restriction that R z is 

B 
2I*X2 (7) 

which usually requires a large moment of inertia, that is, I* > 1. E. H. Smith's expen- 
ments show that the fluctuation of I;z is about 2 yo of for the special arrangement he 
used. An evaluation of his data also reveals that B is almost constant over a wide 
Reynolds-number range, and that the Reynolds number can be as low as 

Re,[ = U d / v  = 100, 

where 1' is the kinematic viscosity of the fluid. 
The occurrence of autorotation a t  low Reynolds numbers permits the construction 

of solutions of the Navier-Stokes equations with presently available computers and 
experience in numerical analysis. The assumption of constant i2 overcomes another 
difficulty in numerical formulations and solutions: In order to induce the plate to 
autorotate a certain amount of initial rotation must be provided. If this initial impulse 
is too weak, the plate will oscillate a few times, and the motion may then come either 
to a stop or it may become autorotation. If the initial rotation is too strong, the plate 
will first rotateowing to this initial impulse and may subsequentlyautorotate. In both 
cases numerical computations would require a number of trials with excessively long 
computer runs to arrive at  a solution for the state of autorotation. This situation can 
be avoided by assuming a constant i2 of the plate. Then, only the Reynolds number, 
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Li = constant 

- I  
FIGURE 1. Average torque means that an outside 
torque is necessary to drive the plate with constant angular velocity a. Negative values of 
(shaded area) indicate that the outside torque has a breaking effect. If in this area the body is 
free to rotate, it will autorotate and increase its angular velocity until point A is reached. This 
is the stable state of autorotation (after Riabouchinsky 1935). 

plotted versus R. A positive value of 

the spin parameter, and the geometric quantities occur as flow parameters after the 
initial phase.t 

In general, equation (2) will not be satisfied for a prescribed set of flow parameters 
if Q is a constant. Rather, p can be positive, in which case the plate must be driven 
by an external force, or can be negative, in which case the external force will cause 
braking. Riabouchinsky ( 1935) experimented with the Lanchester propeller and 
obtained a relation between p and R as sketched in figure 1. When R is small or large 
in relation to U ,  an outside positive torque is necessary to drive the plate. Between 
these values, an R range exists in which the outside torque is negative and thus 
requires a braking effect on the spinning of the propeller. Riabouchinsky called this 
range ‘ autorotative ’. If the outside torque were removed, the propeller would increase 
its angular velocity until p = 0, which is the state of autorotation (point A in figure 1). 
Since a second situation exists in which = 0, the condition of autorotation must be 
augmented by the stability criterion (ap/aQ),=, > 0. 

The same situation, observed by Riabouchinsky for the Lanchester propeller, holds 
also for the plate rotating about a fixed axis normal to the flow. Thus, the phenomenon 
of autorotation can be studied by examining the flow behaviour for various values of S. 

For numerical reasons, as given by Lugt & Ohring (1977), it is convenient t o  
approximate the plate by a thin elliptic cylinder in a co-ordinate system (7 ,6)  which 
is related to the Cartesian co-ordinates (x, y) through 

x+ iy  = acosh(q+iO) for a > 0, (8) 

where a is the focal distance; 7 = ql is the elliptic body contour. I ts  value is also a 
measure of the relative thickness of the ‘plate’. Again for numerical reasons, rl = 0.1 
was chosen (except for one case with rl = 0.6) instead of r1 = 0, which is the infinitely 
thin plate. However, it may be mentioned that the difference in the results between 
rl = 0 and rl = 0.1 is insignificant. 

t It should be pointed out, however, tkat with R = const. the effect of changes in the moment 
of inertia cannot be obtained. 



822 H .  J .  Lagt 

7 e =constant \ 

U 

X 

FIGURE 2. Elliptic co-ordinate system and definition of angle of attack a. In  this figure the right- 
hand edge of the elliptic cylinder is the 'leading edge' for 0" < a < 90" and 270" < a < 360°, 
and becomes the 'trailing edge' for 90" < a < 270". The upper half of the surface which faces 
the flow is called the 'front ', the lower half the 'rear' of the body. A vortex which develops in 
the rear of an edge develops 'behind' this edge. The edge which moves with the flow is called 
the 'retreating edge' (the right-hand edge in the figure), the other edge is the 'advancing edge'. 

If the reference frame is fixed to the body, the initial- and boundary-value problem 
for the Navier-Stokes equations expressed in terms of the vorticity w and the stream 
function $ is 

VZ$ = 0, (10) 

where the flow quantities are made dimensionless by U and the focal distance a. In 
particular, t = t'U/a. The Reynolds number is defined by Re = 2 a U / v ,  and the para- 
meter h is h2 = cosh2 7 - cos2 8. 

The spin parameter S enters into the boundary conditions. In Lugt & Ohring (1977) 
the Rossby number Ro = U / a a  was introduced. However, for practical reasons, it 
is useful to have the chord of the plate d = 2a cosh ql as a reference length. Then, 
Re, = d U / v ,  S = 1/Rof, = dL2/2U. The boundary conditions are (figure 2 ) :  

@ = 0, a$/a7 = o a t  7 = yl, (11)  

with a!(t) = t/Ro the angle of attack. 
The abrupt start of the body from rest is chosen as the initial condition, which 

consists of the potential-flow solution and a vorticity sheet at  the body surface 
enforcing the nonslip condition. Part of the initial condition is the initial angle of 
attack a = a0. In all examples a0 is chosen to be O", since for this angle the transient 
period is short compared with that for a! = &r (Lugt & Ohring 1977). 

The drag, lift and moment coefficients are defined by 
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Each of the coefficients in equation (13) consists of two parts. The drag coefficient 
is the sum of the drag due to pressure and the drag due to friction 

CD, = -2tanhq,cosa p1cos8d8-2sina 

= - 4 [tanhq,cosal0 277 (-) aw sin8d0-sina/o 2n (-) au cosOdO], (15) 
Re a7 1 87 1 

The lift and moment coefficients may be expressed in a corresponding way (Lugt & 
Haussling 1974). In this notation, positive values of C,, C,, and C, denote, respec- 
tively, drag, lift in the direction of the Magnus force, and torque counteracting the 
body rotation. 

The initial- and boundary-value problem defined above is solved by the same finite- 
difference scheme used in an earlier paper (Lugt & Ohring 1977). It is, therefore, not 
necessary to repeat the procedure here, but it may be mentioned that the vorticity 
equation (9) is discretized with the Dufort-Frankel scheme, and that the Poisson 
equation (10) is solved with Hockney’s direct method. Furthermore, the following 
transformation is made for numerical reasons: 

$ = $* + ~ / R o  (cosh27 - sin2 e), (17) 

= O* -I- 2/R0. (18) 

This transformation avoids large values of @ at the outer boundary but leaves the grid 
fixed to the body. 

The grid has been chosen in such a way that the infinite region of integration is 
replaced by a finite network of points q1 + (i - 1 )  Aq, (j - 4) A8 with i = 1, . . . ,97  and 
j = 1, . . . ,96; Aq = 0.04. The time increments, except in the brief initial phase where 
they are very small, are: 

S = 1,0.5,0*25, ql = 0.1, At = 0.0025; 

8 = 0.167, At = 0-003; 

S = 0.5, ql = 0.6, At = 0.005. 

Since ha = At/Ro, more computer time is required to calculate one plate revolution 
at higher Rossby number. The computer time required on the IBM 360-91 for each 
time step is 0.7 s. One cycle, equal to half a plate revolution, requires then 1250 time- 
steps times 0.7 x Ro, which is 870 x Ro s. 

The accuracy of the numerical scheme was previously checked for the non-rotating 
plate by comparing results using varying grids, with experimental results by Honji 
(Lugt & Haussling 1974), and with a different numerical scheme by Mehta of Stanford 
University (private communication) and by Collins & Dennis (Lugt & Haussling 1978). 
The general rotating-plate program was checked for the special case of the rotating 
circular cylinder (Lugt & Ohring 1977). 
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Ro S Re Red 11 Range 

1 - 1  200 .- 200 0.1 O O - 5 . h  
2 - 0.5 400 .- 400 0.1 0°-4n 
4 - 0.25 200 N 200 0.1 O0-2.2V 
6 - 0.167 200 N 200 0.1 0°-1.5n 
2.37 0.5 169 200 0.6 0 O - 6 ~  

TABLE 1 

The following cases, in addition to those published in Lugt & Ohring (1977), have 
been computed, see table 1 .  The results are presented in the form of flow patterns for 
streamlines and equi-vorticity lines with @* values of - 3-0, - 2-8, . . . , 0, . . . ,2.8,3.0 
and with w* values of - 11-0, - 9.0, . . . ,9 .0 ,  11.0. In  addition, the moment coefficients 
and some data on the surface pressure are given. 

Since there exists no preferred reference frame in which to present the streamlines, 
the selection of such a frame depends on how useful it is for discussions of the flow 
patterns. Two different reference frames have been chosen: ( 1 )  a frame fixed to the 
centre of the body, but rotating in relation to the plate; and (2)  a frame fixed to the 
body. 

3. Results 
In figure 3 the moment coefficients C,%* for S = 1, 0.5, 0-25, 0.167 are plotted against 

the angle of attack a for several revolutions. The transient phase after the abrupt start 
is short, approximately t = a Ro = 71 with to = 0, a, = 0". Hence for the largest Ro 
computed, that is Ro = 6, the initial phase extends only from a = 0" to 30", and the 
computation of one cycle afterwards is sufficient, However, variations in the amplitude, 
which can occur after the initial phase, are probably due to the development of the 
wake and should vanish after a certain time. 

In figure 4 a representative cycle of C,, (half revolution) is plotted for S = 1, 0.5, 
0.25, 0.167, Re = 200, T , I ~  = 0.1. These values are much smaller than those predicted 
by the potential-flow solution 

C,,, = -71sin2a (19) 

for a thin plate either fixed or rotating with constant SZ. This torque is generated 
through the asymmetric locations of the stagnation points which are not affected by 
the rotation term in the stream function because of its symmetry (Lamb 1945). The 
amplitude of the function (19) is C,, x -71 for T , I ~  = 0.1. In  figure 4 values for a non- 
rotating body a t  a = 45" and 135" are also included. These values vary according to 
the periodic wake of the vortex street. 

The average value of C,, is defined by 

(20) 

It is zero for the potential-flow solution (1  9) which characterizes autorotation. For 
viscous fluid flows the average values of C,, are presented in figure 5 as a function of 
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FIGURE 3. Chf versus a for v1 = 0.1, a, = 0". (a) S = 1 ,  Re = 200. ( b )  S = 0.5: - ,Re = 400; 
_ - -  , Re = 200. ( c )  S = 0.25, Re = 200. ( d )  S = 0.167, Re = 200. 
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01 

FIGURE 4. Comparison of C, v w m  u over one representative cycle (half revolution of the plate) 
for various S with Re = 200, T~ = 0.1. The retarding period extends approximately from 90" 

S = 0.26; -, S = 0.167; I, fixed plate. 
t o  180' ( O O ) ,  the supporting period from 0" to 90". * * * , = 1 ; -*-*-, = 0.5;  - - -, 

0 0.2 0.4 0.6 0.8 1.0 

FIGURE 5 .  Moment coefficients ver.9~8 S for Re = 200, r ] ,  = 0.1. 0, ~ M R ;  0, ~ M S ;  0,  CM. 
In  the shaded area the body autorotates. (See also the legend for figure 1 .) 

8 for Re = 200. It is usefuI to distinguish between the retarding and supporting periods 
of C M :  



FIGURE 6.  Sequence of streamlines and equi-vorticity lines around a rotating thin elliptic 
cylinder in a parallel flow for S = 1, Re = 200, v1 = 0.1, a, = 0'. The flow is from right to 
left. I n  the supporting period from a = 3n to 37r + i7r the retreating edge (lower right) is the 
leading edge and becomes the trailing edge (lower left) in the retarding period 377 + bn < a < 4n. 
The streamlines are computed in a frame which is fixed to the body with xegard to translation 
but which is fixed in space with regard to rotation. 

Autorotation of an elliptic cylinder 
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ff = 3n ++n ff = 31r + + l  

ff=3lr+* 

I 
/ 

f f = 3 n + &  

f f = 4 n  a=3lr+* 

FIQURE 7. The mme situation as in figure 6 but the streamlines are computed 
in a frame fixed to  the body. 
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FIQW 8. Sequence of streamlines and equi-vorticity lines for S = 0.5,  Re = 400, = 0.1, 
a. = 0”. The case Re = 200 is published in Lugt & Ohring (1977). 
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\ 
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/ 

FIGURE 9. Same situation as in figure 8 but streamlines are computed 
in a frame fixed to the body. 

Negative values of cJf appear in the shaded region with a minimum at S = 0.25. 
Stable autorotation occurs a t  S = 0.45. Although is still negative for S = 0.167, 
the fact that its absolute value is smaller than for S = 0.25 indicates the trend toward 
positive values. 

It may be noted that the values of the frictional parts CDF, CLF, and C,,, of the total 
forces and torque are an order-of-magnitude smaller than C,, C,, and C,,, even for the 
thick body ,ul = 0.6. The following discussions are, therefore, based mainly on the 
pressure and the coefficient C,,,. 

In comparing the frequency of vortex shedding with the rate of rotation, it is useful 
to consult the patterns of streamlines and equi-vorticity lines over a cycle for various 
S (figures 6-13). As already pointed out in Lugt & Ohring (1977) two types of vortex 
shedding can be distinguished, depending on whether the vortex at  the retreating 
edge is in front of or behind the edge as seen from the direction of parallel flow (figure 
6 , a  = 3n + #n, the vorticity tongue at the lower edge curled in the counter-clockwise 
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a =#n 

a =* 

OL =+n 

OL=n 

a=*++n 

a=n++n 

a=*++* 

FIGURE 10. Sequence of streamlines and equi-vorticity lines for 
S = 0.167, Re = 200, qI = 0.1, a, = 0". 
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FIGURE 11. Same situation as in figure 10 but streamlines are computed 
in a frame fixed to the body. 

direction is barely visible but becomes more pronounced for 01 = 4n. In figure 10, 
a = Qr, the tongue in the clockwise direction can clearly be seen.) For S 1,  Re = 200 
the relative rate of rotation is so fast that vortices shed from the edges of the plate 
do not have time to leave the vicinity of the plate and are trapped by the approach 
of the other edge and then shed. According to figure 5, under these conditions the 
plate requires an outside driving torque to rotate. For smaller S, probably S < 0.167, 
the rotation relative to translation is so slow tha t  the frequency of vortex shedding 
is larger than the rate of rotation. Prom figure 5 it appears that c& becomes positive 
for S < 0.187 (see also figure 1).  In the region 0.167 < S < 0.5, Re = 200 synchroniza- 
tion occurs. The frequency of vortex shedding adjusts to the rate of rotation. This 
phenomenon has been called ‘lock-in’ in the study of oscillating bodies in a parallel 
flow (Griffin & Ramberg 1974). In  this range of S autorotation occurs. Hence, 
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FIGURE 12. Sequence of streamlines and equi-vorticity lines for 
S = 0.5, Re, = 200, v1 = 0.6, u.,, = 0". 

27 
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t z 

FIGURE 13. Same situation aa in figure 12 but stmamlkes are computed in 8 

frame fixed to the body. 

synchronization is a necessary, but not sufficient, condition for autorotation, as the 
case of a wobbling plate demonstrates. 

What mechanism provides excess torque in the shaded region of figure 5 and damping 
in other regions? This question will be addressed by discussing the supporting and 
retarding period separately. 

(a )  Supporting period 

In  viscous fluid flows the torque is much smaller than in potential flows during both 
the supporting and retarding periods because the centre of pressure in the rear of the 
body is generally closer to the body centre than it is in potential flow (stagnation 
points in figures 7 and 9). Viscosity modifies the flow characteristics in the supporting 
period in the following way: behind the leading (retreating) edge a vorticity tongue is 
visible which owes its existence to the boundary layer in front of the edge. The faster 
the rotation, the more closely the tongue clings to the rear of the edge since the vorticity 
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s=  1 

S = 0.5 

S = 0.25 

S = 0.167 

FIGTJRE 14. Surface pressure p ,  versus 0 for various S at 
Re = 200, T~ = 0.1, and a = 30". 

has not enough time to be convected downstream (lower edge in figure 6 ,  a = 3n + Qn; 
figure 8, a = 2n+Qn; figure 10, a = n+$n). This clinging causes a higher suction 
effect behind the edge. 

This clinging may also be explained in the following way. With faster rotation 
vortex separation (stall), which is defined by the first occurrence of a vorticity extre- 
mum inside the fluid, is delayed. This delay is caused by the acceleration of fluid with 
growing a, resulting in a reduction of the adverse pressure gradient (A. M. 0. Smith 
1953). For instance, for S = 0.5, Re = 200, the vortex at the leading edge separates 
between 60" and 75" (figure 8, a = 2nfQ7r. Hence, higher S favours autorotation 
because of the lower surface pressure p ,  behind the edge (figure 14). 

Around the advancing edge differences in the surface pressure due to the various 
shapes of the vorticity tongue are negligible except for X 3 1. Here, the vortices from 
the preceding cycle (upper edge in figure 6 , a  = 3n + Qn) cause a lower pressure region 
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836 H .  J .  Lugt 

0 

S= 1 

S = 0.5 

0 R 0 21 

Front Rear 

FIGURE 15. Surface pressure p 1  versus 0 for various S at 
Re = 200, 7, = 0.1, and z = 150". 

with an adverse effect on autorotation (figure 14). To a certain extent this effect 
counteracts for S = 1 the advantage of the delay of vortex shedding at  the other edge. 
As a result, cA+f, in figure 5 decreases only slightly with larger S .  This indicates (and 
will be later elaborated on) that a local event like delayed vortex shedding behind the 
retreating edge by itself is not sufficient to explain autorotation. Rather, the interplay 
of all parts of the flow field must be considered. 

(b)  Retarding period 

According to figure 4 the major differences among the various S-cases occur in the 
retarding period. It is here that viscous effects determine the balance between CAfR 
and ICafsl, and thus the occurrence of autorotation. 
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When the supporting period changes to the retarding period a t  a M in, the delay of 
vortex separation around the retreating edge plays an important role in the distribu- 
tion of the surface pressure (figure 15). For small and large S vortex separation is 
either too early or too late in the critical a range between 120" and 150". For large 
S a new, counter-clockwise vortex develops, whereas for small S a new, clockwise 
vortex appears (vorticity tongue a t  the lower edge in figure 6 , m  = 377 + $77, and figure 
10, a = $77). In  both cases the very low surface pressure in front of the retreating edge 
counteracts autorotation. (In connexion with figure 15, it may be mentioned that for 
all cases the local torque contribution - p ,  sin 26/cosh2 ql was computed, but is not 
presented here.) The existence of another stagnation point for S = 1 in figure 15 near 
8 = 15" is due to the presence of the newly generated vorticity tongue while the other 
vortex has not yet moved out of the way (figure 6, a = 377 + $77, lower edge). 

In  the intermediate S-range, however, vortex separation occurs a t  just the right 
moment. The flow and pressure distribution for 120" < a < 150" are then similar to 
those behind a flat plate parallel to the stream (indicated in figure 8, a = 277+%77 for 
S = 0.5, figure 15, S = 0.25). This optimum situation for autorotation occurs at 
S = 0.25. The diminished variation in the surface pressure reduces the adverse effect 
of the retarding period. 

This peculiar situation does not occur in the supporting period, when there is 
always an asymmetric flow around the edges (see $ 3 ~ ) .  In  the supporting period 
asymmetry favours autorotation because of the suction effect. The knowledge 
that lcAfsl > 0 can be obtained only by actually computing the moment 
coefficients. The difference between \CAIsl and C,,, a t  a certain a may be called 'torque 
hysteresis ' . 

is, and how unpredictable the out- 
come is without computation, is demonstrated by the effect of the leading edge on 
autorotation in the retarding period. Here early separation of a vortex favours auto- 
rotation. In  the initial phase, however, with a. = 90" (Lugt & Ohring 1977) the vortex 
behind the leading edge is close to the plate and much stronger a t  later times. During 
this period the plate does not autorotate. 

As in the supporting period, the above situation shows that the delay of vortex 
shedding at the retreating edge by itself is insufficient to describe autorotation. The 
effect of premature vortex shedding a t  the other edge must be considered too. There- 
fore the term ' torque hysteresis ' is preferred over 'lift hysteresis ', which only refers 
to the delayed vortex separation behind the leading edge of a wing. 

and CaIs is the influence of 
the sharpness of the edges on autorotation (Riabouchinsky 1935). It is well known 
that plates with sharp edges autorotate better (that is, faster) than those with blunt 
edges, and that blunt bodies do not necessarily autorotate. In  order to study this 
effect, flows around a thick elliptic cylinder were investigated. 

In  the limit q1 -+ co the elliptic cylinder becomes a circular one. The distinction 
between retarding and supporting periods disappears, and the torque is always 
positive, a t  least for the Oseen-type flow (Lugt & Ohring 1977) and the special cases 
studied by Thoman & Szewczyk (1966). The fat ellipse 7, = 0.6 has been selected as 
a typical example of conditions between the extremes ql = 0 and 7, = co. From 
simple geometrical considerations one expects that tip effects are no longer pronounced 
and that the larger surface area (when a! is kept constant) has an adverse effect on 

How delicate the balance between cAIs and 

Another example of the delicate balance between 
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autorotation. Dynamically speaking, one expects for v1 = 0.6 less concentration of 
vorticity around the blunt tips. 

Calculations show that CM = 0.178 for S = 0.5, Re, = 200, and vl = 0.6. Therefore, 
this body does not autorotate. However, with an amplitude of about 0.9 for CAI the 
difference between Cl.lR = 0.435 and ICLTfSl = 0.257 is not as dramatic as one might 
expect. This means that the curvature effects are rather subtle, and this is confirmed 
by calculations. It appears that the vortex behind the retreating tip is weaker for 
ql = 0.6 than for v1 = 0.1 (figure 12, a = 5n+$r,  lower edge), and that this is the 
major cause for the small value of \CMs\. The fact that the thick ellipse does not 
autorotate for S = 0.5, Re, = 200, does not mean, however, that it cannot auto- 
rotate a t  all. It is still possible that it could autorotate for smaller S and L2 + const. 
The autorotation of blunt bodies like hailstones suggests this (Kry & List 1974). 
Recently, Taneda ( 1977) published photographs of streamlines and streaklines of 
elliptic cylinders with yl = 0.55 rotating with constant Cl in a parallel flow. These 
experiments were carried out for Re, = 41, S = 0.17; Re, = 129, S = 0.5; and 
Re, = 140, S = 0.05. It appears that synchronization occurs even for the small spin 
parameter 0-05, in contrast to the results obtained for vl = 0.1, where synchronization 
is restricted to 0.25 < S < 0.5 for Re = 200. 

The case S = 0.5, Re = 400, vI = 0.1 has been chosen to study the effect of Reynolds 
numbers on autorotation. There are no essential differences between Re = 200 and 
400, neither with respect to the force and moment coeEcients (figure 3) nor with respect 
to flow patterns (figure 8; for Re = 200 see Lugt & Ohring 1977). In fact, a comparison 
of C, and C, curves for Re = 200 with the corresponding experimental data, for 
Re = 90000 from E. H. Smith (1971) reveals a surprisingly good agreement (figure 16). 
Also, the flow patterns are strikingly similar. The spin coefficient, however, is larger 
in the experiments by E. H. Smith and other investigators for large Reynolds numbers: 
8 M 0.8 to 1.0 (Iversen 1979). 

The insensitivity of unsteady large-scale vortex structures in laminar flows, which 
is demonstrated here for autorotation, has recently been observed for accelerated 
wings under high angle of attack (Lugt & Haussling 1978). The small-scale structure 
appears to be of only secondary importance on the gross flow patterns and on the 
force and lift coefficients. 

4. Conclusions 
Autorotation of platesnormal to a parallel flow occurs under the following conditions. 
( a )  A necessary but not sufficient condition for autorotation is the synchronization 

of vortex shedding and rate of rotation. A lock-in effect is observed over a certain S-  
range, in which the frequency of vortex shedding adjusts to the rate of rotation. This 
S-range roughly coincides with the shaded area in figure 5.  

( b )  The vortex behaviour at  the retreating edge of the plate is crucial for autorota- 
tion. In  the supporting period a strong, attached vortex behind the retreating edge 
helps autorotation. In the retarding period the timing of its shedding is important. 
Premature shedding (for small S )  or delayed shedding (for large S) results in an 
asymmetric flow past the retreating edge (120" < a < 150') with low pressure at  the 
edge which has an adverse effect on autorotation. Under condition (a), however, the 
flow past the retreating edge is quite symmetric, and the pressure on both sides of 



Adorotation of an elliptic cylinder 839 

I - Re = 200, numerical 
8 -  

- 
3 

- 

0 -  

- -2  1 I I 
R 
2 

a 

O0 - II 

I 1 I 8 

6 

4 

0" 
2 

0 

-2 ~ 

0" 3n n 
a 

FIGURE 16. CD and CL for one cycle. Comparison of numerical results for Re = 200, 
7, = 0-1 with experimental data for Re = 90000, v1 = 0.16 from E. H. Smith (1971).  

the plate is balanced. This situation reduces the adverse torque in the retarding period. 
(c )  The attached vortex behind the retreating edge in the supporting period favours 

autorotation according to ( b ) .  Rounded edges weaken this vortex. Thus, a sharp edge 
is most favourable for autorotation. The fat elliptical cylinder y1 = 0.6 does not auto- 
rotate for S = 0.5, Re, = 200, and s2 = const. 

(d )  The parameter I*S2 must be sufficiently large so that condition ( 6 )  is satided. 
( e )  Autorotation requires the fulfilment of all conditions (a)  through (d) .  The actual 

occurrence and the exact rate of autorotation are determined by a delicate and intricate 
interplay of factors (a)  through (d). For Re, = 200, rl = 0.1, and s2 = const., stable 
autorotation occurs a t  8 x 045 .  

Reynolds-number effects on the force and moment coefficients as well as on large- 
scale vortex structures are probably small over the range 200 < Re, < 90000. 
According to E. H. Smith (1971) (whose data have been corrected by Iversen 1979) 
and other investigators, the spin parameter is about 0.8 to 1.0 for Reynolds numbers 
much larger than 200. 
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